Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Front Med (Lausanne) ; 9: 952697, 2022.
Article in English | MEDLINE | ID: covidwho-2099173

ABSTRACT

Currently, neutralizing antibody and vaccine strategies have been developed by targeting the SARS-CoV-2 strain identified during the early phase of the pandemic. Early studies showed that the ability of SARS-CoV-2 RBD or NTD antibodies to elicit infection enhancement in vivo is still controversial. There are growing concerns that the plasma and neutralizing antibodies from convalescent patients or people receiving vaccines mediate ADE of SARS-CoV-2 variants infections in immune cells. Here, we constructed engineered double-mutant variants containing an RBD mutation and D614G in the spike (S) protein and natural epidemic variants to gain insights into the correlation between the mutations in S proteins and the ADE activities and tested whether convalescent plasma and TOP10 neutralizing antibodies in our laboratory mediated the ADE effects of these SARS-CoV-2 variants. We found that one out of 29 convalescent plasma samples caused the ADE effect of pandemic variant B.1.1.7 and that the ADE effect of wild-type SARS-CoV-2 was not detected for any of these plasma samples. Only one antibody, 55A8, from the same batch of convalescent patients mediated the ADE effects of multiple SARS-CoV-2 variants in vitro, including six double-mutant variants and four epidemic variants, suggesting that ADE activities may be closely related to the antibody itself and the SARS-CoV-2 variants' S proteins. Moreover, the ADE activity of 55A8 depended on FcγRII on immune cells, and the introduction of LALA mutations at the Fc end of 55A8 eliminated the ADE effects in vitro, indicating that 55A8LALA may be a clinical drug used to prevent SARS-CoV-2 variants. Altogether, ADE may occur in rare convalescent patients or vaccinees with ADE-active antibodies who are then exposed to a SARS-CoV-2 variant. These data suggested that potential neutralizing antibodies may need to undergo ADE screening tests for SARS-CoV-2 variants, which should aid in the future design of effective antibody-based therapies.

2.
iScience ; 25(12): 105479, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2095532

ABSTRACT

The repetitive applications of vaccine boosters have been brought up in face of continuous emergence of SARS-CoV-2 variants with neutralization escape mutations, but their protective efficacy and potential adverse effects remain largely unknown. Here, we compared the humoral and cellular immune responses of an extended course of recombinant receptor binding domain (RBD) vaccine boosters with those from conventional immunization strategy in a Balb/c mice model. Multiple vaccine boosters after the conventional vaccination course significantly decreased RBD-specific antibody titers and serum neutralizing efficacy against the Delta and Omicron variants, and profoundly impaired CD4+ and CD8+T cell activation and increased PD-1 and LAG-3 expressions in these T cells. Mechanistically, we confirmed that extended vaccination with RBD boosters overturned the protective immune memories by promoting adaptive immune tolerance. Our findings demonstrate potential risks with the continuous use of SARS-CoV-2 vaccine boosters, providing immediate implications for the global COVID-19 vaccination enhancement strategies.

3.
Front Immunol ; 12: 789905, 2021.
Article in English | MEDLINE | ID: covidwho-1581321

ABSTRACT

Facing the imminent need for vaccine candidates with cross-protection against globally circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants, we present a conserved antigenic peptide RBD9.1 with both T-cell and B-cell epitopes. RBD9.1 can be recognized by coronavirus disease 2019 (COVID-19) convalescent serum, particularly for those with high neutralizing potency. Immunization with RBD9.1 can successfully induce the production of the receptor-binding domain (RBD)-specific antibodies in Balb/c mice. Importantly, the immunized sera exhibit sustained neutralizing efficacy against multiple dominant SARS-CoV-2 variant strains, including B.1.617.2 that carries a point mutation (SL452R) within the sequence of RBD9.1. Specifically, SY451 and SY454 are identified as the key amino acids for the binding of the induced RBD-specific antibodies to RBD9.1. Furthermore, we have confirmed that the RBD9.1 antigenic peptide can induce a S448-456 (NYNYLYRLF)-specific CD8+ T-cell response. Both RBD9.1-specific B cells and the S448-456-specific T cells can still be activated more than 3 months post the last immunization. This study provides a potential vaccine candidate that can generate long-term protective efficacy over SARS-CoV-2 variants, with the unique functional mechanism of activating both humoral and cellular immunity.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/pharmacology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Vaccines, Subunit/immunology
4.
Nat Commun ; 12(1): 6304, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500462

ABSTRACT

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus display remarkable efficacy against authentic B.1.351 virus. Surprisingly, structural analysis has revealed that 58G6 and 13G9 both recognize the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly binds to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrate prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. Together, we have evidenced 2 potent neutralizing Abs with unique mechanism targeting authentic SARS-CoV-2 mutants, which can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Epitopes , Humans , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Load/drug effects , Weight Loss/drug effects
5.
Pharmacol Res ; 160: 105074, 2020 10.
Article in English | MEDLINE | ID: covidwho-1364403

ABSTRACT

PURPOSE: Traditional Chinese medicine (TCM) has fully engaged and played an essential role in the prevention and treatment of Coronavirus Disease 2019 (COVID-19). This study compares relevant standards on high-frequent Chinese Materia Medicia (CMM) used in this pandemic aiming at reaching a global consensus and ensuring the use of Chinese medicines safely. METHODS: 141 representative Chinese formulas and Chinese Patent Medicines from the National Protocol and the most of Provincial Protocols for controlling COVID-19 in China have been collected to statistical analyze the composition and characteristics of CMM. Among them, the domestic and international standards of 47 varieties with the frequency usage over 10 times were selected to compare their quality requirements in the mainstream pharmacopoeias and international standards. RESULTS: The quality requirements of used CMM for fighting COVID-19 on the terms of overall quality control, marker compounds, and safety indicators showed different patterns in these mainstream pharmacopoeias and international standards. The uniformed and scientific quality standards of CMM were urgently needed to promote global acceptation and trade. CONCLUSIONS: These findings will provide evidence for building unified quality and safety standards that can adapt to the characteristics of CMM and promote international trade, and also will be stated that it is of the highest priority for ISO/TC 249 to formulate high-quality standards that consolidate international consensus to ensure quality and safety of the urgently needed CMM.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Drugs, Chinese Herbal/standards , Drugs, Chinese Herbal/therapeutic use , Materia Medica/standards , Medicine, Chinese Traditional/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , COVID-19 , Coronavirus Infections/drug therapy , Drug Compounding , Drugs, Chinese Herbal/adverse effects , Humans , Materia Medica/adverse effects , Materia Medica/therapeutic use , Patient Safety , Pharmacopoeias as Topic , Public Health , Quality Control , COVID-19 Drug Treatment
6.
Journal of Physics: D Applied Physics ; 54(40):1-5, 2021.
Article in English | Academic Search Complete | ID: covidwho-1337236

ABSTRACT

This study applied surface discharge plasma treated-air to deactivate the pseudovirus with the SARS-CoV-2S protein in a cold-chain environment. The results of experiments show that the capability of infection of either the dried or the wet COVID-19 pseudovirus are inhibited after exposure to plasma treated-air regardless of whether it is attached to flakes of plastic or a copper sheet. Moreover, various plasma-generated reactive species provide it with an advantage over conventional ozone in deactivating the wet pseudovirus in a cold-chain environment. Our findings provide a potential disinfecting strategy to combat the spread of SARS-CoV-2 through cold-chain systems. [ABSTRACT FROM AUTHOR] Copyright of Journal of Physics: D Applied Physics is the property of IOP Publishing and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

7.
Biochem Biophys Res Commun ; 571: 152-158, 2021 09 24.
Article in English | MEDLINE | ID: covidwho-1330656

ABSTRACT

Potent neutralizing antibodies (Abs) have been proven with therapeutic efficacy for the intervention against SARS-CoV-2. Majority of these Abs function by directly interfering with the virus entry to host cells. Here, we identified a receptor binding domain (RBD) specific monoclonal Ab (mAb) 82A6 with efficient neutralizing potency against authentic SARS-CoV-2 virus. As most Abs targeting the non-receptor binding motif (RBM) region, 82A6 was incapable to block the RBD-ACE2 interaction. In particular, it actively promoted the S1 subunit shedding from the S protein, which may lead to effective reduction of intact SARS-CoV-2 viruses. Importantly, it could block potential syncytia formation associated with post-infectious cell surface expression of S proteins. Our study evidenced a RBD specific Ab with unique beneficial efficacy against SARS-CoV-2 infection, which might bring informative significance to understand the collective effects of neutralizing Abs elicited in COVID-19 patients.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/therapeutic use , Antibody Specificity , Binding Sites/immunology , COVID-19/immunology , COVID-19/virology , Giant Cells/immunology , Giant Cells/virology , HEK293 Cells , Humans , Immunization, Passive , In Vitro Techniques , Protein Domains , Protein Subunits , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Virus Shedding , COVID-19 Serotherapy
8.
Genes Dis ; 9(1): 216-229, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1293799

ABSTRACT

Despite the growing knowledge of T cell responses in COVID-19 patients, there is a lack of detailed characterizations for T cell-antigen interactions and T cell functions. Here, with a predicted peptide library from SARS-CoV-2 S and N proteins, we found that specific CD8+ T cell responses were identified in over 75% of COVID-19 convalescent patients (15/20) and an epitope from the N protein, N361-369 (KTFPPTEPK), was the most dominant epitope from our selected peptide library. Importantly, we discovered 2 N361-369-specific T cell receptors (TCRs) with high functional avidity that were independent of the CD8 co-receptor. These TCRs exhibited complementary cross-reactivity to several presently reported N361-369 mutant variants, as to the wild-type epitope. Further, the natural functions of these TCRs in the cytotoxic immunity against SARS-CoV-2 were determined with dendritic cells (DCs) and the lung organoid model. We found that the N361-369 epitope could be normally processed and endogenously presented by these different types of antigen presenting cells, to elicit successful activation and effective cytotoxicity of CD8+ T cells ex vivo. Our study evidenced potential mechanisms of cellular immunity to SARS-CoV-2, and illuminated potential ways of viral clearance in COVID-19 patients. These results indicate that utilizing CD8-independent TCRs against SARS-CoV-2-associated antigens may provide functional superiority that is beneficial for the adoptive cell immunotherapies based on natural or genetically engineered T cells. Additionally, this information is highly relevant for the development of the next-generation vaccines with protections against continuously emerged SARS-CoV-2 mutant strains.

9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.19.440481

ABSTRACT

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus displayed remarkable efficacy against authentic B.1.351 virus. Each of these 3 mAbs in combination with one neutralizing Ab recognizing non-competing epitope exhibited synergistic effect against authentic SARS-CoV-2 virus. Surprisingly, structural analysis revealed that 58G6 and 13G9, encoded by the IGHV1-58 and the IGKV3-20 germline genes, both recognized the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly bound to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrated prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. These 2 ultrapotent neutralizing Abs can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Weight Loss
10.
Front Immunol ; 12: 653189, 2021.
Article in English | MEDLINE | ID: covidwho-1172966

ABSTRACT

After the pandemic of COVID-19, neutralizing antibodies (NAbs) against SARS-CoV-2 have been developed for the prophylactic and therapeutic purposes. However, few methodologies are described in detail on how to rapidly and efficiently generate effective NAbs to SARS-CoV-2. Here, we integrated and optimized a strategically screening method for NAbs, which has enabled us to obtain SARS-CoV-2 receptor-binding domain (RBD) specific NAbs within 6 days, followed by additional 9 days for antibody production and function analysis. Using this method, we obtained 198 specific Abs against SARS-CoV-2 RBD from the blood samples of COVID-19 convalescent patients, and 96 of them showed neutralizing activity. At least 20% of these NAbs exhibited advanced neutralizing potency and high affinity, with the top two NAbs showing half-maximal inhibitory concentration (IC50) to block authentic SARS-CoV-2 at 9.88 and 11.13 ng/ml, respectively. Altogether, our study provides an effective methodology with high applicable value for discovering potential preventative and therapeutic NAbs for the emerging infectious diseases.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , Humans , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
11.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-215131.v1

ABSTRACT

Accumulating mutations on SARS-CoV-2 Spike (S) protein may increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, in a panel of receptor binding domain (S-RBD) specific monoclonal antibodies (mAbs) with high neutralizing potency against authentic SARS-CoV-2, at least 6 of them were found to efficiently block the pseudovirus of 501Y.V2, a highly transmissible SARS-CoV-2 variant with escape mutations. The top 3 neutralizing Abs (13G9, 58G6 and 510A5) exhibited comparative ultrapotency as those being actively pursued for clinical development. Interestingly, the antigenic sites for the majority of our neutralizing Abs overlapped with a single epitope (13G9e) on S-RBD. Further, the 3-dimensional structures of 2 ultrapotent neutralizing Abs 13G9 or 58G6 in complex with SARS-CoV-2 S trimer demonstrated that both Abs bound to a steric region within S472–490. Moreover, a specific linear region (S450–457) was identified as an additional target for 58G6. Importantly, our cryo-electron microscopy (cryo-EM) analysis revealed a unique phenomenon that the S-RBDs interacting with the fragments of antigen binding (Fabs) of 13G9 or 58G6 encoded by the IGHV1-58 and the IGKV3-20 gene segments were universally in the ‘up’ conformation in all observed particles. The potent neutralizing Abs presented in the current study may be promising candidates to fulfill the urgent needs for the current pandemic of SARS-CoV-2, and may of fundamental value for the next-generation vaccine development.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
12.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-111926.v2

ABSTRACT

Background: Despite the growing number of studies on the Coronavirus Disease-19 (COVID-19), little is known about the association of menopausal status with COVID-19 outcomes. Materials: and methods: In this retrospective study, we included 336 COVID-19 in-patients between February 15, 2020 and April 30, 2020 at the Taikang Tongji Hospital (Wuhan), China. Electronic medical records, including patient demographics, laboratory results, and chest computed tomography (CT) images were reviewed. Results: : In total, 300 patients with complete clinical outcomes were included for analysis. The mean age was 65.3 years and most patients were women (n=167, 55.7%). Over 50% of patients presented with comorbidities, with hypertension (63.5%) being the most common comorbidity. After propensity-score matching, results showed that men had significantly higher odds than premenopausal women for developing severe disease type (23.7% vs. 0%, OR 17.12, 95% CI 1.00–293.60; p =0.003) and bilateral lung infiltration (86.1% vs. 64.7%, OR 3.39, 95% CI 1.08–10.64; p = 0.04), but not for mortality (2.0% vs. 0%, OR 0.88, 95% CI 0.04–19.12, p =1.00). However, non-significant difference was observed among men and post-menopause women in the percentage of severe disease type (32.7% vs. 41.7%, OR 0.68, 95% CI 0.37–1.24, p =0.21) and bilateral lung infiltration (86.1% vs. 91.7%, OR 0.56, 95% CI 0.22–1.47, p =0.24), mortality (2.0% vs. 6.0%, OR 0.32, 95% CI 0.06–1.69, p =0.25). Conclusions: : Men had higher disease severity than premenopausal women, while the differences disappeared between postmenopausal women and men. These findings support aggressive treatment for the poor-prognosis of postmenopausal women in clinical practice.


Subject(s)
COVID-19 , Hypertension
13.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-139960.v1

ABSTRACT

Background: The global spread of coronavirus disease 2019 (COVID-19) continues to threaten all human health worldwide. Although the symptoms, signs, responses, and outcomes associated with the disease varies for individuals, few studies have reported on pediatric patients with COVID-19.Methods: This study retrospectively reviewed the medical records from three tertiary hospitals in Anhui province, China, of 23 children with COVID-19. Here, epidemiologic characteristics, clinical features, laboratory test results, and treatment strategies for these pediatric patients are reported and analyzed.Results: In total, 23 children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were analyzed. All patients were given a nucleic acid detection test for SARS-CoV-2, and positive results confirmed the diagnosis of COVID-19. Ten patients (43.5%) were female, and 19 patients (82.6%) had defined exposure history and familial clustering. The youngest patient was 16 months of age, the oldest, 17 years. The clinical symptoms of all included pediatric patients with SARS-CoV-2 infection were mild, with cough (12, 52.2%) and fever (10, 43.5%) being the most frequent, making their symptoms indistinguishable from common respiratory infections. There was no difference in clinical manifestation between males and females (P > 0.05). Eight patients (34.8%) showed changes on chest computed tomography imaging. The median level of each laboratory test parameter was within the normal reference range. Treatments primarily included antiviral therapies, traditional Chinese medicine therapies, and symptomatic supportive treatment.Conclusions: The symptoms of all 23 pediatric patients with SARS-CoV-2 infection included in this study were mild. Because the primary presenting symptoms were indistinguishable from common respiratory infections and because most patients had an exposure history and familial clustering, we recommend supporting the diagnosis of mild or atypical COVID-19 in children with detailed epidemiologic information and chest computed tomography imaging as well as with nucleic acid detection tests. Obtaining a correct diagnosis in the early stage of the disease will contribute to controlling the spread of SARS-CoV-2 infection and to providing more immediate relevant treatment for infected children.


Subject(s)
Coronavirus Infections , Infections , Fever , Cough , Respiratory Tract Infections , COVID-19
14.
Genes Dis ; 9(2): 522-530, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-987738

ABSTRACT

The pandemic of COVID-19 caused by SARS-CoV-2 has made serious threats to the public health. Antibodies have been considered as promising therapeutics for the prevention and treatment of pathogens. So far, effectors that can influence the sustainability of SARS-CoV-2 specific antibodies in COVID-19 patients are still unclear. In this paper, we attempted to find potential key factors correlated with SARS-CoV-2 specific antibodies. Transcriptional analysis with the peripheral blood mononuclear cells (PBMCs) revealed proportional changes of immune cell subsets in COVID-19 convalescent patients, including a substantial decrease of monocytes and evident increase of dendritic cells (DCs). Moreover, we found that the gene expressions of chemokines associated with monocyte/macrophage were significantly up-regulated during the COVID-19 recovery phase. Most importantly, we found a set of 27 immune genes corresponding to a comparatively lower amount of SARS-CoV-2 specific antibodies, and identified two hub genes, IL1ß and IL6, the protein expressions of which exhibited negative correlation with the immunoglobulin G (IgG) levels in COVID-19 convalescent sera. In addition, we found that high expressions of these 2 hub genes during the convalescent stage were negatively associated with the plasma cell marker CD138. Our study presented two key inflammatory factors correlated to the low level of SARS-CoV-2 specific antibodies, which indicated the potential regulatory process of plasmatic antibodies levels in some COVID-19 convalescent patients.

15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.02.364729

ABSTRACT

Despite the growing knowledge of T cell responses and their epitopes in COVID-19 patients, there is a lack of detailed characterizations for T cell-antigen interactions and T cell functions. Using a peptide library predicted with HLA class I-restriction, specific CD8+ T cell responses were identified in over 75% of COVID-19 convalescent patients. Among the 15 SARS-CoV-2 epitopes identified from the S and N proteins, N361-369 (KTFPPTEPK) was the most dominant epitope. Importantly, we discovered 2 N361-369-specific T cell receptors (TCRs) with high functional avidity, and they exhibited complementary cross-reactivity to reported N361-369 mutant variants. In dendritic cells (DCs) and the lung organoid model, we found that the N361-369 epitope could be processed and endogenously presented to elicit the activation and cytotoxicity of CD8+ T cells ex vivo. Our study evidenced potential mechanisms of cellular immunity to SARS-CoV-2, illuminating natural ways of viral clearance with high relevancy in the vaccine development.


Subject(s)
COVID-19
16.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-87599.v1

ABSTRACT

After the epidemic of COVID-19, neutralizing antibodies (NAbs) against SARS-CoV-2 has been developed for the preventative and therapeutic purposes. However, few methodologies are reported in detail on how to rapidly and efficiently generate NAbs of interest. Here, we present a strategically optimized screening method for NAbs, which has enabled us to obtain SARS-CoV-2 receptor-binding domain (RBD) specific monoclonal Abs within 4 days, followed by additional 2 days to evaluate their neutralizing activities. Using this method, we obtained 198 specific Abs against SARS-CoV-2 RBD from the blood samples of COVID-19 convalescent patients, and 96 of them showed neutralizing activity. At least 20% of these NAbs exhibited high neutralizing potency. The top 2 NAbs showed the half-maximal inhibitory concentration (IC50) to block authentic SARS-CoV-2 at 9.88 and 11.13 ng/ml, respectively. Altogether, our study provides a fundamental methodology for discovering NAbs with potential preventative and therapeutic value for emerging infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases, Emerging
17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.11.292631

ABSTRACT

The spread of SARS-CoV-2 confers a serious threat to the public health without effective intervention strategies1-3. Its variant carrying mutated Spike (S) protein D614G (SD614G) has become the most prevalent form in the current global pandemic4,5. We have identified a large panel of potential neutralizing antibodies (NAbs) targeting the receptor-binding domain (RBD) of SARS-CoV-2 S6. Here, we focused on the top 20 potential NAbs for the mechanism study. Of them, the top 4 NAbs could individually neutralize both authentic SARS-CoV-2 and SD614G pseudovirus efficiently. Our epitope mapping revealed that 16/20 potent NAbs overlapped the same steric epitope. Excitingly, we found that one of these potent NAbs (58G6) exclusively bound to a linear epitope on S-RBD (termed as 58G6e), and the interaction of 58G6e and the recombinant ACE2 could be blocked by 58G6. We confirmed that 58G6e represented a key site of vulnerability on S-RBD and it could positively react with COVID-19 convalescent patients plasma. We are the first, as far as we know, to provide direct evidences of a linear epitope that can be recognized by a potent NAb against SARS-CoV-2 S-RBD. This study paves the way for the applications of these NAbs and the potential safe and effective vaccine design.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
18.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.11.293183

ABSTRACT

IntroductionWe present the sequence analysis for 47 complete genomes for SARS-CoV-2 isolates on Turkish patients. To identify their genetic similarity, phylogenetic analysis was performed by comparing the worldwide SARS-CoV-2 sequences, selected from GISAID, to the complete genomes from Turkish isolates. In addition, we focused on the variation analysis to show the mutations on SARS-CoV-2 genomes. MethodsIllumina MiSeq platform was used for sequencing the libraries. The raw reads were aligned to the known SARS-CoV-2 genome (GenBank: MN908947.3) using the Burrows-Wheeler aligner (v.0.7.1). The phylogenetic tree was constructer using Phylip v.3.6 with Neighbor-Joining and composite likelihood method. The variants were detected by using Genome Analysis Toolkit-HaplotypeCaller v.3.8.0 and were inspected on GenomeBrowse v2.1.2. ResultsAll viral genome sequences of our isolates was located in lineage B under the different clusters such as B.1 (n=3), B.1.1 (n=28), and B.1.9 (n=16). According to the GISAID nomenclature, all our complete genomes were placed in G, GR and GH clades. Five hundred forty-nine total and 53 unique variants were detected. All 47 genomes exhibited different kinds of variants. The distinct variants consist of 274 missense, 225 synonymous, and 50 non-coding alleles. ConclusionThe results indicated that the SARS-CoV-2 sequences of our isolates have great similarity with all Turkish and European sequences. Further studies should be performed for better comparison of strains, after more complete genome sequences will be released. We also believe that collecting and sharing any data about SARS-CoV-2 virus and COVID-19 will be effective and may help the related studies.


Subject(s)
COVID-19
19.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.20.258772

ABSTRACT

Topic modeling is frequently employed for discovering structures (or patterns) in a corpus of documents. Its utility in text-mining and document retrieval tasks in various fields of scientific research is rather well known. An unsupervised machine learning approach, Latent Dirichlet Allocation (LDA) has particularly been utilized for identifying latent (or hidden) topics in document collections and for deciphering the words that define one or more topics using a generative statistical model. Here we describe how SARS-CoV-2 genomic mutation profiles can be structured into a Bag of Words to enable identification of signatures (topics) and their probabilistic distribution across various genomes using LDA. Topic models were generated using ~47000 novel corona virus genomes (considered as documents), leading to identification of 16 amino acid mutation signatures and 18 nucleotide mutation signatures (equivalent to topics) in the corpus of chosen genomes through coherence optimization. The document assumption for genomes also helped in identification of contextual nucleotide mutation signatures in the form of conventional N-grams (e.g. bi-grams and tri-grams). We validated the signatures obtained using LDA driven method against the previously reported recurrent mutations and phylogenetic clades for genomes. Additionally, we report the geographical distribution of the identified mutation signatures in SARS-CoV-2 genomes on the global map. Use of the non-phylogenetic albeit classical approaches like topic modeling and other data centric pattern mining algorithms is therefore proposed for supplementing the efforts towards understanding the genomic diversity of the evolving SARS-CoV-2 genomes (and other pathogens/microbes).

20.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.19.253369

ABSTRACT

Neutralizing antibodies (Abs) have been considered as promising therapeutics for the prevention and treatment of pathogens. After the outbreak of COVID-19, potent neutralizing Abs to SARS-CoV-2 were promptly developed, and a few of those neutralizing Abs are being tested in clinical studies. However, there were few methodologies detailly reported on how to rapidly and efficiently generate neutralizing Abs of interest. Here, we present a strategically optimized method for precisive screening of neutralizing monoclonal antibodies (mAbs), which enabled us to identify SARS-CoV-2 receptor-binding domain (RBD) specific Abs within 4 days, followed by another 2 days for neutralization activity evaluation. By applying the screening system, we obtained 198 Abs against the RBD of SARS-CoV-2. Excitingly, we found that approximately 50% (96/198) of them were candidate neutralizing Abs in a preliminary screening of SARS-CoV-2 pseudovirus and 20 of these 96 neutralizing Abs were confirmed with high potency. Furthermore, 2 mAbs with the highest neutralizing potency were identified to block authentic SARS-CoV-2 with the half-maximal inhibitory concentration (IC50) at concentrations of 9.88 ng/ml and 11.13 ng/ml. In this report, we demonstrated that the optimized neutralizing Abs screening system is useful for the rapid and efficient discovery of potent neutralizing Abs against SARS-CoV-2. Our study provides a methodology for the generation of preventive and therapeutic antibody drugs for emerging infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases, Emerging
SELECTION OF CITATIONS
SEARCH DETAIL